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EPFL

Enseignant : Dr. Sylvain Bréchet E_
Examen : physique générale 11

Date : vendredi 21 juin 2024 E
Durée : 9h15 - 12h45

N° SCIPER :
SECTION :

SALLE / PLACE: /

L’examen est constitué de 3 problémes qui totalisent 57 points

NO

VISA

POINTS

avec 4 points bonus additionnels. Chaque probléme comporte
un énoncé illustré et détaillé sur la page de gauche et des ques-

tions sur la page de droite. Les développements mathématiques

et physiques d’un probléme doivent étre effectués et rédigés pro-

prement sur les pages quadrillées a la fin du probléme.

Consignes

e Attendre le début de ’épreuve avant d’ouvrir le cahier d’examen.

e Le formulaire de ’examen (1 page A4 recto-verso) est autorisé.

e L’utilisation de tout appareil électronique est interdite.
quadrillées a la fin du probléme.

effet.

avec du correcteur blanc si nécessaire.

e Les feuilles de papier brouillon ne seront pas ramassées et pas corrigées.

e Ne pas dégrafer le cahier d’examen et laisser le tableau et les cases blanches vides.

e Préparer votre carte Camipro, la poser visiblement sur la table et vérifier votre N° Sciper.

e Un dictionnaire bilingue non annoté est autorisé pour les étudiant.e.s non francophones.

o Effectuer les développements mathématiques et physiques d'un probléme sur les pages
e Retranscrire les réponses sur les pointillés sous chaque question dans les espaces réservés a cet

e Utiliser un stylo a encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement

e Il est recommandé de résoudre les questions bonus a la fin de ’examen si le temps le permet.
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Probléme 1: Frottement stationnaire entre des cylindres métalliques (19 points)

Lo Dl Dl Dl De Ll Do DLl Ds [Llo Lo [ Ju [ Jia [ Juo [ Jua [ Jis
[ e Lis [

Laisser les cases blanches vides

Mloxt I

Réservoir chaud 0 />
\ ) N {
a température 77 | ~~+ -~

|

Réservoir froid 0 |

a température Ty '« G}

Un systéme thermodynamique, formé de deux cylindres métalliques rigides de méme axe de symétrie ver-
tical, est en régime stationnaire. Le sous-systéme 1 est constitué du cylindre supérieur qui est entrainé
par un moment de force extérieure M;*' et tourne a vitesse angulaire constante w; = cste dans le sens
trigonométrique autour de 'axe de symétrie en vue d’avion. Le cylindre inférieur est le sous-systéme 2 qui

est maintenu immobile.

En régime stationnaire, le moment de force de frottement exercé par le cylindre inférieur 2 sur le cylindre
supérieur 1 de rayon r, est M 1“ = — A riwi ot A\; > 0. Le moment cinétique du cylindre supérieur est
L, = I, wy ou I; > 0 est son moment d’inertie par rapport a ’axe de rotation.

Les cylindres 1 et 2 sont des sous-systémes simples, rigides, constitués de N1 et Ny moles d’atomes respective-
ment. L’interface entre les cylindres est diatherme et imperméable. Le cylindre 1 est maintenu & température
constante T par le réservoir chaud 0 et le cylindre 2 est maintenu a température constante T par le réservoir
froid 0. Ces deux réservoirs de chaleur 0 sont considérés comme I'environnement du systéme. Le cylindre
supérieur a la méme vitesse angulaire que le réservoir chaud avec lequel il est & 1’équilibre thermique. Les
températures des cylindres satisfont la relation d’ordre T > T5.

Etant donné que le systéme est en régime stationnaire, ’énergie, I’énergie cinétique, 1’énergie interne et
I’entropie de chaque cylindre ainsi que le moment cinétique du cylindre supérieur sont des constantes.

Les réponses doivent étre exprimées en termes des températures 77 et To, des nombres de moles d’atomes
N7 et No, du moment d’inertie I7, de la norme de la vitesse angulaire wq, du coefficient A, du rayon r1, de
la constante des gaz parfaits R et des grandeurs scalaires spécifiées de I’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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. (3 points) Déterminer la puissance extérieure P ' exercée sur le systéme. En déduire le courant de
chaleur total Iy entre le systéme et les réservoirs de chaleur (I’environnement) en régime stationnaire.

. (3 points) Déterminer le courant d’entropie I's entre le systéme et les réservoirs de chaleur et la source
d’entropie g du systéme en termes des courants d’entropie 1372 et 127! entre les sous-systémes en

régime stationnaire.

. (3 points) Montrer que la somme des courants de chaleur 15*2 et IQ2_’1 entre les deux cylindres en

régime stationnaire s’écrit,

[5_>2 + Ié_ﬂ = )\1 T1 w%

. (2 points) Montrer que les courants de chaleur Ié_” et IQQ_’l entre les deux cylindres en régime

stationnaire satisfont la relation suivante,

TG+ oI5 >0

. (3 points) Durant un intervalle de temps quelconque At;_, s =t; — ¢;, déterminer en régime station-
naire la chaleur échangée Qj _,; entre le cylindre supérieur et le réservoir chaud a température 77, la
chaleur échangée @, , 7 entre le cylindre inférieur et le réservoir froid a température Ty, et le travail

W% effectué sur le systéme en termes des courants de chaleur 1, 477 et 157! entre les cylindres.
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Probléme 2: Cycle calorifique critique d’un fluide de van der Waals (21 points)

Lo Dl Dl Dl De Ll Do DLl Ds [Llo Lo [ Ju [ Jia [ Juo [ Jua [ Jis
[ e e D Do [0 [

Laisser les cases blanches vides

»
|
»
'

Un fluide de van der Waals constitué de N moles est contenu dans un cylindre fermé. Le cycle calorifique
que subit ce fluide biphasique est formé de cinq processus :

e 1 — 2 détente adiabatique réversible,

e 2 — 3 wvaporisation a la pression p~ et la température T~ de la source froide,

e 3 — 4 compression isochore réversible & volume V3,

e 4 — 5 compression isotherme réversible & la température T de la source chaude,
e 5 — 1 compression isotherme réversible & la température T de la source chaude.

Le cycle passe par le point critique qui correspond a I’état 5 sur le diagramme (p, V'). La courbe de saturation
est représentée en traitillé. L’équation d’état du fluide de van der Waals est donnée par,

_ NRT  aN?
T V-Nb V2

p

et son énergie interne et sa différentielle s’écrivent,

a N? a N?
v et dU:cNRdTJrWdV

U=cNRT —

Les réponses doivent étre exprimées en termes de la température 7' de la source chaude, de la température
T~ de la source froide, des volumes Vi, Vo, V3, de la pression p~ et du nombre N de moles de fluide, de la
constante des gaz parfaits R, des parameétres a, b et ¢ et des grandeurs scalaires spécifiées dans 1’énoncé de
chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suitvantes
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. (3 points) Esquisser qualitativement le diagramme (7, .S) du cycle sur I’énoncé ci-contre en indiquant
les états 1 a 5 et en définissant 'orientation des processus avec des fléches.

. (2 points) Durant un processus quelconque, montrer que la différentielle de ’entropie d.S s’écrit
2p P q que, q D :

cNRdII' NRAV

WS=—7F+ v "Mm

. (3 points) Calculer le travail W,_,5 effectué sur le fluide de van der Waals par l’environnement durant
la, compression isotherme 4 — 5 & température TF. Indice : si vous ne parvenez pas & identifier le
volume critique V5, supposez le connu.

. (2 points) Calculer la variation d’énergie libre AFy_,; du fluide de van der Waals durant la compression
isotherme 4 — 1 & température 7"

. (2 points) Déterminer le coefficient de compressibilité isotherme yr et la chaleur latente molaire de
vaporisation y_,4 au point critique dans 1'état 5 quasiment sans faire de calcul.

. (4 points) Calculer la chaleur Q2_,5 fournie au liquide de van der Waals durant la vaporisation et
I’exprimer explicitement en termes de la pression de vaporisation p~. En déduire la chaleur latente
molaire de vaporisation ;4 qu’il faut fournir au liquide de van der Waals pour qu’il se transforme
entiérement en gaz durant la vaporisation 2 — 3.

. (3 points) Durant la détente adiabatique 1 — 2, montrer que la température T et le volume V du
fluide de van der Waals satisfont la relation suivante,

c+1

T(V—Nb)" '=cste on 5=
c

. (BONUS : 2 points) La vaporisation peut étre modélisée comme une réaction chimique a de vitesse
de réaction €, entre le liquide, considéré comme le réactif de coefficient stoechiométrique v,y et de
potentiel chimique g, et le gaz, considéré comme le produit de coefficient stoechiométrique v,, et
de potentiel chimique pg. Déterminer I'affinité A, de la réaction chimique et en déduire la source
d’entropie ¥ g durant la vaporisation.

A o e
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Probléme 3: Compression isotherme irréversible d’un gaz parfait (21 points)

T PO P S P B R B T I I T A O Y A
[l e Dis Do [0 [

Laisser les cases blanches vides

Etat initial Etat intermédiaire Etat final

Crmen)
ST

On modélise la compression isotherme d’un systéme thermodynamique fermé constitué de N moles de gaz
parfait enfermé dans un cylindre vertical par un piston de masse M et d’aire A. Le cylindre est placé dans
une enceinte dans laquelle on a fait le vide. Il n’y a donc pas de pression atmosphérique & considérer dans
ce probléme. De plus, le systéme est maintenu & température constante T par contact avec un réservoir de
chaleur.

Dans I’état initial ¢, avant la compression, le gaz parfait de pression p; est a I’équilibre mécanique avec le
piston qui exerce une pression p** sur le gaz. On pose alors un poids de masse M’ sur le piston ce provoque
la compression du gaz parfait & pression p due a la pression p®** exercée sur le gaz par le piston et le poids :
c’est I’état intermédiaire de compression. Dans ’état final f, aprés la compression, le gaz parfait de pression

py a atteint I’équilibre mécanique avec le piston et le poids qui exercent une pression pj?"t

ext

sur lui.

ext

pi=p> et p<pT=pf et  py=p;f

Le travail effectué de maniére irréversible par le piston et le poids sur le gaz durant la compression isotherme
de I’état initial ¢ & I’état final f s’écrit,

f
Wisy == [ portav

Durant la compression isotherme, la source d’entropie du systéme s’écrit,

1 .
ES — T (p_ pext) 4

L’entropie générée de maniére irréversible dans le systéme lors de la compression isotherme est définie comme,

f ty
Syinf = / 0S8y = / Ygdt
A t;

i

Les réponses doivent étre exprimées en termes de la masse M du piston, de la masse M’ du poids, du nombre
de moles N de gaz parfait, de la température T', de la constante des gaz parfaits R et des grandeurs spécifiées
dans I’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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. (3 points) Montrer que la variation d’entropie s’écrit en fonction de la chaleur Q;_, s restituée au
réservoir de chaleur durant la compression isotherme i — f,

. (3 points) Montrer que les rapports de la pression finale py et de la pression initiale p; ainsi que du
volume final V; et du volume initial V; s’écrivent,
M’ \% M
Py _ 1+ — et S _=
Di M Vi M+ M
. (3 points) Calculer le travail W;_, ; effectué par le piston et le poids sur le gaz et la chaleur restituée
Qi— ¢ au réservoir de chaleur durant la compression isotherme irréversible i — f.

. (2 points) Calculer la variation d’entropie AS;_,; du gaz parfait durant la compression isotherme
irréversible i — f.

. (2 points) Montrer que l'entropie Sy ;s générée de manicre irréversible dans le systéme durant la
compression isotherme irréversible ¢ — f s’écrit,

M’ M
it =N — 4+ In|{ ——
Szing R<M+H(M+M’>)
. (3 points) Dans la limite ou le rapport des masses est suffisamment faible,

MI

t 0< 1
i e r <<

In(l+z)~=x ou x

montrer explicitement que la compression devient réversible et en déduire explicitement une relation
entre les pressions p et p®** dans ce cas.

. (3 points) Calculer le travail I/Vio_> ¥ effectué sur le gaz par le piston et le poids durant une compression
réversible i — f et montrer que les travaux effectués de maniére réversible et irréversible sont égaux,
c’est-a-dire W,0, 5 = Wi, dans la limite ou le rapport des masses est suffisamment faible, c’est-a-dire
x=M/M < 1.

. (BONUS : 2 points) Montrer qu’en général la compression isotherme est irréversible explicitement
a l'aide de ’entropie Sy .
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