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Enseignant : Dr. Sylvain Bréchet
Examen : physique générale II
Date : vendredi 21 juin 2024
Durée : 9h15 - 12h45

1
Enoncé

N◦ SCIPER :

SECTION :

SALLE/PLACE : /

L’examen est constitué de 3 problèmes qui totalisent 57 points
avec 4 points bonus additionnels. Chaque problème comporte
un énoncé illustré et détaillé sur la page de gauche et des ques-
tions sur la page de droite. Les développements mathématiques
et physiques d’un problème doivent être effectués et rédigés pro-
prement sur les pages quadrillées à la fin du problème.

N◦ VISA POINTS

1

2

3

Consignes

• Préparer votre carte Camipro, la poser visiblement sur la table et vérifier votre N◦ Sciper.
• Attendre le début de l’épreuve avant d’ouvrir le cahier d’examen.
• Le formulaire de l’examen (1 page A4 recto-verso) est autorisé.
• L’utilisation de tout appareil électronique est interdite.
• Un dictionnaire bilingue non annoté est autorisé pour les étudiant.e.s non francophones.
• Effectuer les développements mathématiques et physiques d’un problème sur les pages
quadrillées à la fin du problème.

• Retranscrire les réponses sur les pointillés sous chaque question dans les espaces réservés à cet
effet.

• Utiliser un stylo à encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement
avec du correcteur blanc si nécessaire.

• Ne pas dégrafer le cahier d’examen et laisser le tableau et les cases blanches vides.
• Les feuilles de papier brouillon ne seront pas ramassées et pas corrigées.
• Il est recommandé de résoudre les questions bonus à la fin de l’examen si le temps le permet.
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Problème 1 : Frottement stationnaire entre des cylindres métalliques (19 points)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19

Laisser les cases blanches vides

Un système thermodynamique, formé de deux cylindres métalliques rigides de même axe de symétrie ver-
tical, est en régime stationnaire. Le sous-système 1 est constitué du cylindre supérieur qui est entraîné
par un moment de force extérieure M ext

1 et tourne à vitesse angulaire constante ω1 = cste dans le sens
trigonométrique autour de l’axe de symétrie en vue d’avion. Le cylindre inférieur est le sous-système 2 qui
est maintenu immobile.

En régime stationnaire, le moment de force de frottement exercé par le cylindre inférieur 2 sur le cylindre
supérieur 1 de rayon r1 est M fr

1 = −λ1 r1 ω1 où λ1 > 0. Le moment cinétique du cylindre supérieur est
L1 = I1 ω1 où I1 > 0 est son moment d’inertie par rapport à l’axe de rotation.

Les cylindres 1 et 2 sont des sous-systèmes simples, rigides, constitués de N1 et N2 moles d’atomes respective-
ment. L’interface entre les cylindres est diatherme et imperméable. Le cylindre 1 est maintenu à température
constante T1 par le réservoir chaud 0 et le cylindre 2 est maintenu à température constante T2 par le réservoir
froid 0. Ces deux réservoirs de chaleur 0 sont considérés comme l’environnement du système. Le cylindre
supérieur a la même vitesse angulaire que le réservoir chaud avec lequel il est à l’équilibre thermique. Les
températures des cylindres satisfont la relation d’ordre T1 > T2.

Etant donné que le système est en régime stationnaire, l’énergie, l’énergie cinétique, l’énergie interne et
l’entropie de chaque cylindre ainsi que le moment cinétique du cylindre supérieur sont des constantes.

Les réponses doivent être exprimées en termes des températures T1 et T2, des nombres de moles d’atomes
N1 et N2, du moment d’inertie I1, de la norme de la vitesse angulaire ω1, du coefficient λ1, du rayon r1, de
la constante des gaz parfaits R et des grandeurs scalaires spécifiées de l’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (2 points) Ecrire l’énergie totale E du système.

E = .........................................................................................................................................

2. (3 points) Déterminer la puissance extérieure P ext exercée sur le système. En déduire le courant de
chaleur total IQ entre le système et les réservoirs de chaleur (l’environnement) en régime stationnaire.

P ext = .....................................................................................................................................

IQ = ........................................................................................................................................

3. (3 points) Déterminer le courant d’entropie IS entre le système et les réservoirs de chaleur et la source
d’entropie ΣS du système en termes des courants d’entropie I 1→2

S et I 2→1
S entre les sous-systèmes en

régime stationnaire.

IS = ........................................................................................................................................

ΣS = .......................................................................................................................................

4. (3 points) Montrer que la somme des courants de chaleur I 1→2
Q et I 2→1

Q entre les deux cylindres en
régime stationnaire s’écrit,

I 1→2
Q + I 2→1

Q = λ1 r1 ω
2
1

5. (2 points) Montrer que les courants de chaleur I 1→2
Q et I 2→1

Q entre les deux cylindres en régime
stationnaire satisfont la relation suivante,

T1 I
1→2
Q + T2 I

2→1
Q > 0

6. (3 points) Durant un intervalle de temps quelconque ∆ti→f = tf − ti, déterminer en régime station-
naire la chaleur échangée Q+

i→f entre le cylindre supérieur et le réservoir chaud à température T1, la
chaleur échangée Q−i→f entre le cylindre inférieur et le réservoir froid à température T2, et le travail
W ext
i→f effectué sur le système en termes des courants de chaleur I 1→2

Q et I 2→1
Q entre les cylindres.

Q+
i→f = ....................................................................................................................................

Q−i→f = ....................................................................................................................................

W ext
i→f = ...................................................................................................................................

7. (3 points) Déterminer l’énergie libre F (T1, T2) du système.

F (T1, T2) = .............................................................................................................................
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Problème 2 : Cycle calorifique critique d’un fluide de van der Waals (21 points)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Laisser les cases blanches vides

1

2 3

4

Un fluide de van der Waals constitué de N moles est contenu dans un cylindre fermé. Le cycle calorifique
que subit ce fluide biphasique est formé de cinq processus :

• 1 → 2 détente adiabatique réversible,

• 2 → 3 vaporisation à la pression p− et la température T− de la source froide,

• 3 → 4 compression isochore réversible à volume V3,

• 4 → 5 compression isotherme réversible à la température T+ de la source chaude,

• 5 → 1 compression isotherme réversible à la température T+ de la source chaude.

Le cycle passe par le point critique qui correspond à l’état 5 sur le diagramme (p, V ). La courbe de saturation
est représentée en traitillé. L’équation d’état du fluide de van der Waals est donnée par,

p =
NRT

V − Nb
− aN2

V 2

et son énergie interne et sa différentielle s’écrivent,

U = cNRT − aN2

V
et dU = cNRdT +

aN2

V 2
dV

Les réponses doivent être exprimées en termes de la température T+ de la source chaude, de la température
T− de la source froide, des volumes V1, V2, V3, de la pression p− et du nombre N de moles de fluide, de la
constante des gaz parfaits R, des paramètres a, b et c et des grandeurs scalaires spécifiées dans l’énoncé de
chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (3 points) Esquisser qualitativement le diagramme (T, S) du cycle sur l’énoncé ci-contre en indiquant

les états 1 à 5 et en définissant l’orientation des processus avec des flèches.

2. (2 points) Durant un processus quelconque, montrer que la différentielle de l’entropie dS s’écrit,

dS =
cNRdT

T
+
NRdV

V − Nb

3. (3 points) Calculer le travail W4→5 effectué sur le fluide de van der Waals par l’environnement durant
la compression isotherme 4 → 5 à température T+. Indice : si vous ne parvenez pas à identifier le
volume critique V5, supposez le connu.

W4→5 = ...................................................................................................................................

4. (2 points) Calculer la variation d’énergie libre ∆F4→1 du fluide de van der Waals durant la compression
isotherme 4→ 1 à température T+.

∆F4→1 = .................................................................................................................................

5. (2 points) Déterminer le coefficient de compressibilité isotherme χT et la chaleur latente molaire de
vaporisation ``→g au point critique dans l’état 5 quasiment sans faire de calcul.

χT = ........................................................................................................................................

``→g = .....................................................................................................................................

6. (4 points) Calculer la chaleur Q2→3 fournie au liquide de van der Waals durant la vaporisation et
l’exprimer explicitement en termes de la pression de vaporisation p−. En déduire la chaleur latente
molaire de vaporisation ``→g qu’il faut fournir au liquide de van der Waals pour qu’il se transforme
entièrement en gaz durant la vaporisation 2→ 3.

Q2→3 = ....................................................................................................................................

``→g = .....................................................................................................................................

7. (3 points) Durant la détente adiabatique 1 → 2, montrer que la température T et le volume V du
fluide de van der Waals satisfont la relation suivante,

T (V − Nb)
γ− 1

= cste où γ =
c+ 1

c

8. (BONUS : 2 points) La vaporisation peut être modélisée comme une réaction chimique a de vitesse
de réaction Ωa entre le liquide, considéré comme le réactif de coefficient stœchiométrique νa` et de
potentiel chimique µ`, et le gaz, considéré comme le produit de coefficient stœchiométrique νag et
de potentiel chimique µg. Déterminer l’affinité Aa de la réaction chimique et en déduire la source
d’entropie ΣS durant la vaporisation.

Aa = ........................................................................................................................................

ΣS = .......................................................................................................................................
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Problème 3 : Compression isotherme irréversible d’un gaz parfait (21 points)
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Laisser les cases blanches vides

On modélise la compression isotherme d’un système thermodynamique fermé constitué de N moles de gaz
parfait enfermé dans un cylindre vertical par un piston de masse M et d’aire A. Le cylindre est placé dans
une enceinte dans laquelle on a fait le vide. Il n’y a donc pas de pression atmosphérique à considérer dans
ce problème. De plus, le système est maintenu à température constante T par contact avec un réservoir de
chaleur.

Dans l’état initial i, avant la compression, le gaz parfait de pression pi est à l’équilibre mécanique avec le
piston qui exerce une pression p ext

i sur le gaz. On pose alors un poids de masse M ′ sur le piston ce provoque
la compression du gaz parfait à pression p due à la pression p ext exercée sur le gaz par le piston et le poids :
c’est l’état intermédiaire de compression. Dans l’état final f , après la compression, le gaz parfait de pression
pf a atteint l’équilibre mécanique avec le piston et le poids qui exercent une pression p ext

f sur lui.

pi = p ext
i et p < p ext = p ext

f et pf = p ext
f

Le travail effectué de manière irréversible par le piston et le poids sur le gaz durant la compression isotherme
de l’état initial i à l’état final f s’écrit,

Wi→f = −
∫ f

i

p ext dV

Durant la compression isotherme, la source d’entropie du système s’écrit,

ΣS =
1

T

(
p− p ext) V̇

L’entropie générée de manière irréversible dans le système lors de la compression isotherme est définie comme,

SΣ i→f =

∫ f

i

δSΣ =

∫ tf

ti

ΣS dt

Les réponses doivent être exprimées en termes de la masseM du piston, de la masseM ′ du poids, du nombre
de moles N de gaz parfait, de la température T , de la constante des gaz parfaits R et des grandeurs spécifiées
dans l’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (3 points) Montrer que la variation d’entropie s’écrit en fonction de la chaleur Qi→f restituée au

réservoir de chaleur durant la compression isotherme i→ f ,

∆Si→f =
Qi→f
T

+ SΣ i→f

2. (3 points) Montrer que les rapports de la pression finale pf et de la pression initiale pi ainsi que du
volume final Vf et du volume initial Vi s’écrivent,

pf
pi

= 1 +
M ′

M
et

Vf
Vi

=
M

M +M ′

3. (3 points) Calculer le travail Wi→f effectué par le piston et le poids sur le gaz et la chaleur restituée
Qi→f au réservoir de chaleur durant la compression isotherme irréversible i→ f .

Wi→f = ...................................................................................................................................

Qi→f = ....................................................................................................................................

4. (2 points) Calculer la variation d’entropie ∆Si→f du gaz parfait durant la compression isotherme
irréversible i→ f .

∆Si→f = .................................................................................................................................

5. (2 points) Montrer que l’entropie SΣ i→f générée de manière irréversible dans le système durant la
compression isotherme irréversible i→ f s’écrit,

SΣ i→f = NR

(
M ′

M
+ ln

(
M

M +M ′

))
6. (3 points) Dans la limite où le rapport des masses est suffisamment faible,

ln (1 + x) ' x où x =
M ′

M
et 0 < x� 1

montrer explicitement que la compression devient réversible et en déduire explicitement une relation
entre les pressions p et p ext dans ce cas.

................................................................................................................................................

7. (3 points) Calculer le travailW 0
i→f effectué sur le gaz par le piston et le poids durant une compression

réversible i → f et montrer que les travaux effectués de manière réversible et irréversible sont égaux,
c’est-à-dire W 0

i→f = Wi→f , dans la limite où le rapport des masses est suffisamment faible, c’est-à-dire
x = M ′/M � 1.

W 0
i→f = ...................................................................................................................................

8. (BONUS : 2 points) Montrer qu’en général la compression isotherme est irréversible explicitement
à l’aide de l’entropie SΣ i→f .
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The End
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The End
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The End
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